Combined Science Past Paper Practice

5.3 Quantitative Chemistry

Demand	Question	Page Number	Mark Scheme
Low	$\mathbf{1}$	2	54
	$\mathbf{2}$	6	55
	$\mathbf{3}$	9	56
	$\mathbf{4}$	13	57
	$\mathbf{5}$	15	58
	$\mathbf{7}$	17	60
	$\mathbf{8}$	25	62
	$\mathbf{9}$	26	64
	$\mathbf{1 0}$	28	66

Demand	Question	Page Number	Mark Scheme
Standard	$\mathbf{1 1}$	31	68
	$\mathbf{1 2}$	33	70
	$\mathbf{1 3}$	35	71
	$\mathbf{1 4}$	37	72
	$\mathbf{1 5}$	40	74
	$\mathbf{1 6}$	42	76
	$\mathbf{1 7}$	44	78
	$\mathbf{1 8}$	45	80
	$\mathbf{2 0}$	49	82
	$\mathbf{2 1}$	53	86

Q1.
A student investigated the temperature change when metal \mathbf{X} was added to copper sulfate solution.

This is the method used.

1. Add $25 \mathrm{~cm}^{3}$ of copper sulfate solution to a beaker.
2. Measure the temperature of the copper sulfate solution.
3. Add 1.0 g of metal \mathbf{X} and stir.
4. Measure the highest temperature reached when metal \mathbf{X} is added to copper sulfate solution.
5. Repeat steps 1 to 4 with different metals.

Figure 1 shows the apparatus used.
Figure 1

Figure 2 shows the thermometer reading of the copper sulfate solution at the start of the investigation.

Figure 2

(a) The highest temperature reached when metal \mathbf{X} was added to copper sulfate solution was $35.5^{\circ} \mathrm{C}$

Determine the temperature change when metal \mathbf{X} is added to copper sulfate solution.
Use Figure 2.
Highest temperature $=35.5 \quad{ }^{\circ} \mathrm{C}$
Temperature at start = \qquad
Temperature change $=$ \qquad ${ }^{\circ} \mathrm{C}$
(b) Give two variables the student should keep the same in this investigation.

1. \qquad
\qquad
2. \qquad
\qquad
(c) The student repeated the experiment with metal \mathbf{Y}.

Table 1 shows four results for metal \mathbf{Y}.

Table 1

	Test 1	Test 2	Test 3	Test 4
Temperature change in ${ }^{\circ} \mathbf{C}$	9.2	7.3	9.5	9.2

Calculate the mean temperature change for metal \mathbf{Y}.
Do not include the anomalous result in your calculation.
\qquad
\qquad
\qquad
\qquad
Mean temperature change = \qquad ${ }^{\circ} \mathrm{C}$

The more reactive the metal added to copper sulfate solution, the greater the temperature change.

Figure 3 shows a reactivity series.
Figure 3

Potassium	most reactive
Calcium	
Magnesium	
Zinc	
Copper	
Silver	

(d) The student repeated the experiment.

The student added:

- magnesium to copper sulfate solution
- an unknown metal A to copper sulfate solution.

Table 2 shows the results.
Table 2

Metal	Temperature change in ${ }^{\circ} \mathbf{C}$
Magnesium	12
Metal \mathbf{A}	8

The student concludes metal \mathbf{A} is zinc.
Give one reason why the student is correct.
Use Figure 3 and Table 2.
\qquad
\qquad
(e) The student did the experiment with silver and copper sulfate solution.

What happens to the temperature of the mixture?
Use Figure 3.
Tick ($\sqrt{ }$) one box.

Decreases

Increases

Stays the same

(f) Suggest one reason why the student should not add potassium metal to copper sulfate solution.
\qquad
\qquad
(g) $100 \mathrm{~cm}^{3}$ of the copper sulfate solution contains 1.8 g of copper sulfate.

Calculate the mass of copper sulfate in $25 \mathrm{~cm}^{3}$ of this copper sulfate solution.
\qquad
\qquad
\qquad
\qquad
Mass =

Q2.

This question is about gold and compounds of gold.
In the alpha particle scattering experiment alpha particles are fired at gold foil.
Alpha particles are positively charged.
The diagram below shows the results.

(a) Some alpha particles are deflected.

Complete the sentence.
Choose the answer from the box.

negatively charged not charged positively charged

Some alpha particles are deflected because the nucleus of the atom is \qquad .
(b) Why are most alpha particles not deflected?

Tick (\checkmark) one box.

The atom is a tiny sphere that cannot be divided.

The atom is mainly empty space. \square

The electrons orbit the nucleus at specific distances. \square
(c) What was one conclusion from the alpha particle scattering experiment?

Tick (\checkmark) one box.

The mass is concentrated at the centre of the atom.

The mass is concentrated at the edge of the atom.

The mass is spread evenly throughout the atom. \square

Gold reacts with the elements in Group 7 of the periodic table.
(d) What are Group 7 elements known as?

Tick (\checkmark) one box.

Alkali metals	\square
Halogens	\square
Noble gases	\square

(e) Fluorine, chlorine and bromine react with gold.

Which element will be the most reactive with gold?
Tick (\checkmark) one box.

Fluorine

Chlorine

Bromine \square
(f) $\quad 3.94 \mathrm{~g}$ of gold reacts with chlorine to produce 6.07 g of gold chloride.

The word equation for the reaction is:

$$
\text { gold + chlorine } \rightarrow \text { gold chloride }
$$

Calculate the mass of chlorine that reacts with 3.94 g of gold.
\qquad
\qquad
Mass = \qquad g
(g) Calculate the relative formula mass $\left(M_{r}\right)$ of gold chloride $\left(\mathrm{AuCl}_{3}\right)$.

Relative atomic masses $\left(A_{r}\right): \mathrm{Cl}=35.5 \mathrm{Au}=197$
\qquad
\qquad
\qquad
\qquad
Relative formula mass $\left(M_{\mathrm{r}}\right)=$
(Total 8 marks)

Q3.

A student investigated the mass of dissolved solids in water samples.
The diagram below shows the apparatus used.

This is the method used.

1. Record the mass of a dry evaporating basin.
2. Pour $25 \mathrm{~cm}^{3}$ of the water sample into the evaporating basin.
3. Place the evaporating basin on the beaker for 10 minutes.
4. Record the mass of the evaporating basin and contents.
(a) What is used to find the mass of the evaporating basin?

Tick (\checkmark) one box.

One error is that droplets of water collect on the bottom of the evaporating basin.
(b) Suggest how this error affects the mass of the evaporating basin and contents.
\qquad
\qquad
(c) How can this error be corrected?
\qquad
\qquad
(d) Another error in the method is that not all the water was removed from the water sample.

How can this error be corrected?
Tick (\checkmark) one box.

Add more boiling water to the beaker.

Heat until the mass of the evaporating basin and contents is constant.

Stir the water sample in the evaporating basin with a glass rod.

(e) The water in the water sample turns into steam.

What is the name of this process?
\qquad

Another student did the experiment correctly with three water samples A, B and C.
The table below shows the results.

Water sample	Mass of dissolved solids in g			
	Test 1	Test 2	Test 3	Mean
A	0.23	0.23	0.20	\mathbf{X}
B	0.03	0.07	0.02	0.04
C	1.45	1.60	1.45	1.50

(f) The range is the difference between the largest value and the smallest value.

Which water sample has the greatest range of results?
Tick (\checkmark) one box.

A

B

C

(g) Calculate the mean mass \mathbf{X} for water sample \mathbf{A}.

Use table above.
\qquad
\qquad
\qquad
\qquad

$$
\mathbf{X}=
$$

(h) What is the dependent variable in this experiment?

Tick (\checkmark) one box.

Mass of dissolved solids

Time taken for water to heat

Type of water sample

Volume of boiling water

(i) A different water sample contains 3.6 g of dissolved solids in $150 \mathrm{~cm}^{3}$

Calculate the mass of dissolved solids in $25 \mathrm{~cm}^{3}$ of this sample.
\qquad
\qquad
\qquad
\qquad
Mass =
(Total 11 marks)

Q4.

This question is about Group 1 elements.
(a) Sodium reacts with chlorine to produce sodium chloride.

Balance the equation for the reaction.

(b) 4.6 g of sodium reacts with chlorine to produce 11.7 g of sodium chloride.

What mass of chlorine reacted?
\qquad
\qquad
Mass of chlorine $=$
(c) A teacher puts hot sodium into a gas jar of chlorine.

The changes seen before, during and after this reaction were observed.
Complete the sentences.
Choose the answers from the box.

| colourless greenlilac
 yellow | silver white |
| :--- | :--- | :--- | :--- | :--- |

Sodium is a \qquad solid.

Chlorine is a \qquad gas.

The hot sodium burns with a \qquad flame.

The product sodium chloride is a \qquad solid.
(d) Sodium chloride (NaCl) is an ionic compound.

Write the formulae of the ions in sodium chloride.

Sodium ion \qquad
Chloride ion \qquad
(e) Complete the sentence.

Choose the answer from the box.

an atom	an electron	a neutron	a proton

Potassium is more reactive than sodium.
This is because potassium loses \qquad more easily than sodium.
(f) How does the size of a potassium atom compare with the size of a sodium atom?

Give a reason for your answer.
\qquad
Reason \qquad
\qquad
\qquad

Q5.

A student investigated the rate of the reaction between magnesium and hydrochloric acid.
The diagram shows the apparatus the student used.

(a) Balance the equation for the reaction.

$$
\mathrm{Mg}+\ldots \ldots \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

(b) The student used $50 \mathrm{~cm}^{3}$ of hydrochloric acid.

Which apparatus would measure $50 \mathrm{~cm}^{3}$ of hydrochloric acid with the greatest accuracy?
Tick (\checkmark) one box.
$50 \mathrm{~cm}^{3}$ beaker

$50 \mathrm{~cm}^{3}$ conical flask \square
$50 \mathrm{~cm}^{3}$ measuring cylinder \square
(c) The student measured the volume of gas produced every 20 seconds for 2 minutes.

The volume of gas was zero at the start of the experiment.
The measured volumes of gas were:

$$
26 \mathrm{~cm}^{3} \quad 38 \mathrm{~cm}^{3} \quad 47 \mathrm{~cm}^{3} \quad 55 \mathrm{~cm}^{3} \quad 59 \mathrm{~cm}^{3} \quad 60 \mathrm{~cm}^{3}
$$

Complete the table to show these results.

0	0

(d) The volumes of gas were lower than expected.

Suggest one reason.
\qquad
\qquad
(e) The student repeated the experiment using different concentrations of hydrochloric acid. Give two variables the student should keep the same.

1 \qquad
2 \qquad
(f) Complete the sentences.

As the concentration of the hydrochloric acid increased, the rate of the reaction \qquad .

This is because there were more acid \qquad in each cubic centimetre $\left(\mathrm{cm}^{3}\right)$.

So the collisions happened more \qquad .

Q6.

This question is about the elements in Group 2 of the periodic table.
(a) Figure 1 shows the positions of four elements, $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D}, in the periodic table.

Figure 1
\square

Which element is in Group 2?
Tick one box.
A \square
B

C

D

Group 2 metal carbonates break down when heated to produce a metal oxide and a gas.

$$
\text { metal carbonate } \rightarrow \text { metal oxide }+ \text { gas }
$$

(b) Name the two products when calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ is heated.
\qquad and \qquad
(c) What type of reaction happens when a compound breaks down?

Tick one box.
burning \square
decomposition \square
neutralisation

reduction \square
(d) The metal carbonate takes in energy from the surroundings to break down.

What type of reaction takes in energy from the surroundings?
Tick one box.

(e) Figure 2 shows the volume of gas produced when a Group 2 metal carbonate is heated.

Figure 2

The student collected $5.2 \mathrm{dm}^{3}$ of gas.
What mass of the Group 2 metal carbonate is heated?
Mass = \qquad g
(f) Calculate the mass of the Group 2 carbonate needed to produce $24 \mathrm{dm}^{3}$ of gas.

Use your answer from part (e) to help you.
\qquad
\qquad
\qquad
\qquad
Mass = g
(g) A student heated different masses of a Group 2 carbonate. The student measured the volume of gas produced.

Figure 3 shows a graph of the student's results.
The student calculates the gradient of the line in Figure 3
The student makes two mistakes.
Figure 3

Correct formula for gradient $=\frac{\text { Increase in volume of gas }}{\ln \text { crease in mass of Group } 2 \text { metal carbonate he ated }}$
Student's calculation $=\frac{4}{750}=0.00533 \mathrm{~cm}^{3}$ per g

Identify the two mistakes the student makes.
Calculate the correct gradient of the line.
Mistake 1 \qquad
\qquad
Mistake 2 \qquad
\qquad
Calculation \qquad
\qquad
Gradient = \qquad cm^{3} per g
(h) A student repeated the experiment with a different Group 2 metal carbonate $\left(\mathrm{XCO}_{3}\right)$.

The relative formula mass $\left(M_{r}\right)$ of XCO_{3} is 84
Relative atomic masses $\left(A_{r}\right): \quad \mathrm{C}=12 \quad \mathrm{O}=16$
Calculate the relative atomic mass $\left(A_{r}\right)$ of \mathbf{X}.
Name metal X.
Use the periodic table.
\qquad
\qquad
\qquad
\qquad
Relative atomic mass $\left(A_{r}\right)=$ \qquad
Metal \mathbf{X} is \qquad

Q7.

A student investigated the effect of the size of marble chips on the rate of the reaction between marble chips and hydrochloric acid.

This is the method used.

1. Add 10.0 g of marble chips into the flask.
2. Add $50 \mathrm{~cm}^{3}$ of hydrochloric acid and start a timer.
3. Record the mass lost from the flask every 10 seconds.
4. Repeat steps 1 to 3 with different sizes of marble chips.

Figure 1 shows the apparatus.
Figure 1

(a) Draw one line from each type of variable to the correct example of the variable.

> Type of variable

Example of variable

Mass lost from flask

Size of flask

Size of marble chips
Control
Time taken

Volume of acid
(b) The equation for the reaction is:

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Name the three products.

1. \qquad
2. \qquad
3. \qquad
(c) Another student suggests putting some cotton wool in the top of the flask.

Suggest why this improves the investigation.
\qquad
\qquad
(d) The reaction produces 1.6 g of gas in 30 seconds.

Calculate the mean rate of the reaction in the first 30 seconds.
Use the equation:

$$
\text { mean rate of reaction }=\frac{\text { mass of product produced in grams }}{\text { time in seconds }}
$$

\qquad
\qquad
Mean rate of reaction =
(e) What is the unit for the mean rate of reaction calculated in part (d)?

Tick one box.
g \square
g/s \square
s

s/g \square
(f) The table below shows the student's results.

Time in seconds	Mass of gas produced in \mathbf{g}
0	0.0
10	0.8
20	0.6
30	1.6
40	1.8
50	2.0
60	2.0

Plot the data from the table above on Figure 2
Draw a line of best fit.
Figure 2

(g) Figure 3 shows a large marble chip and eight small marble chips.

Figure 3

Large marble chip

Eight small marble chips

The large marble chip has the same total volume as the eight small marble chips, but a different surface area.

Why do the eight small marble chips react faster than the large marble chip?
Tick one box.

The eight small marble chips have a larger surface area, so less frequent collisions.

The eight small marble chips have a larger surface area, so more frequent collisions. \square

The eight small marble chips have a smaller surface area, so less frequent collisions. \square
The eight small marble chips have a smaller surface area, so more frequent collisions.

Q8.
Some students investigated the thermal decomposition of metal carbonates.
The word equation for the reaction is:
metal carbonate \rightarrow metal oxide + carbon dioxide
The students made the following hypothesis:
'When heated the same mass of any metal carbonate produces the same mass of carbon dioxide.'
The students heated a test tube containing copper carbonate.
The table below shows their results.

Time the test tube containing copper carbonate was heated in mins	0	2	4	6
Mass of test tube and contents in \mathbf{g}	17.7	17.1	17.0	17.0

Plan a method the students could use to test their hypothesis.
You should show how the students use their results to test the hypothesis.
You do not need to write about safety precautions.
\qquad
(Total 6 marks)

Q9.

This question is about reactions of metals.
The diagram shows what happens when calcium, copper, magnesium and zinc are added to hydrochloric acid.
Calcium

Copper

 Zinc

(a) What is the order of decreasing reactivity of these four metals?

Tick (\checkmark) one box.

Ca Cu Mg Zn \square
Ca Zn Ca Mg

Ca Mg Zn Cu \square

A student wants to make a fair comparison of the reactivity of the metals with hydrochloric acid.
(b) Name two variables that must be kept constant.

1 \qquad
\qquad

2 \qquad
\qquad
(c) What is the independent variable in this reaction?
\qquad
\qquad
(d) Predict the reactivity of beryllium compared with magnesium.

Give a reason for your answer.
Use the periodic table.
\qquad
Reason \qquad
\qquad
\qquad
(e) A solution of hydrochloric acid contains 3.2 g of hydrogen chloride in $50 \mathrm{~cm}^{3}$

Calculate the concentration of hydrogen chloride in g per dm^{3}
\qquad
\qquad
\qquad
\qquad
Concentration $=\ldots \mathrm{g} \mathrm{per} \mathrm{dm}{ }^{3}$

Q10.
This question is about salts.
Ammonium nitrate solution is produced when ammonia gas reacts with nitric acid.
(a) Give the state symbol for ammonium nitrate solution.
(b) What is the formula of nitric acid?

Tick (\checkmark) one box.
HCl

HNO_{3}

$\mathrm{H}_{2} \mathrm{SO}_{4}$

$\mathrm{NH}_{4} \mathrm{OH}$ \square
(c) Ammonia gas dissolves in water to produce ammonia solution.

Ammonia solution contains hydroxide ions, OH^{-}
A student adds universal indicator to solutions of nitric acid and ammonia.
What colour is observed in each solution?

Colour in nitric acid \qquad
Colour in ammonia solution \qquad
(d) The student gradually added nitric acid to ammonia solution.

Which row, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, shows the change in pH as the nitric acid is added until in excess?

Tick (\checkmark) one box.

	pH of ammonia solution at start	pH after addition of excess nitric acid
A	10	7
B	2	10
C	7	\square
D	10	2

(e) Calculate the percentage by mass of oxygen in ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$.

Relative atomic masses $\left(A_{r}\right): \quad \mathrm{H}=1 \quad \mathrm{~N}=14 \quad \mathrm{O}=16$
Relative formula mass (M_{r}): $\mathrm{NH}_{4} \mathrm{NO}_{3}=80$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Percentage by mass of oxygen = \qquad \%
(f) Describe a method to investigate how the temperature changes when different masses of ammonium nitrate are dissolved in water.

You do not need to write about safety precautions.
\qquad

Q11.
Water that is safe to drink contains dissolved substances.
(a) What do we call water that is safe to drink?

Tick ($\sqrt{ }$) one box.

(b) Describe a test for pure water.

Give the result of the test if the water is pure.

Test \qquad
Result \qquad
\qquad
\qquad
(c) Describe a method to determine the mass of dissolved solids in a $100 \mathrm{~cm}^{3}$ sample of river water.
\qquad
(d) A sample of river water contains 125 mg per dm^{3} of dissolved solids.

Calculate the mass of dissolved solids in grams in $250 \mathrm{~cm}^{3}$ of this sample of river water. Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of dissolved solids =
(e) A water company allows a maximum of 500 mg per dm^{3} of sulfate ions in drinking water.

A sample of drinking water contains 44 mg per dm^{3} of sulfate ions.
Calculate the percentage (\%) of the maximum allowed mass of sulfate ions in the sample of drinking water.
\qquad
\qquad
\qquad
\qquad
Percentage (\%) of the maximum allowed mass = \%
(Total 13 marks)

Q12.This question is about electrolysis.
A student investigates the mass of copper produced during electrolysis of copper chloride solution.

The diagram below shows the apparatus.

(a) Which gas is produced at the positive electrode (anode)?

Tick one box.
carbon dioxide \square
chlorine

hydrogen \square
oxygen \square
(b) Copper is produced at the negative electrode (cathode).

What does this tell you about the reactivity of copper?
Tick one box.

Copper is less reactive than hydrogen

Copper is less reactive than oxygen \square
Copper is more reactive than carbon \square

Copper is more reactive than chlorine \square

The table below shows the student's results.

	Total mass of copper produced in mg			
Time in mins	Experiment 1	Experiment 2	Experiment 3	Mean
$\mathbf{1}$	0.60	0.58	0.62	0.60
$\mathbf{2}$	1.17	1.22	1.21	1.20
$\mathbf{4}$	2.40	2.41	2.39	2.40
$\mathbf{5}$	3.02	\mathbf{X}	3.01	3.06

(c) Determine the mean mass of copper produced after 3 minutes.
\qquad
\qquad
Mass =
mg
(d) Calculate the mass \mathbf{X} of copper produced in Experiment 2 after 5 minutes.

Use the table above.
\qquad
\qquad
\qquad
\qquad
Mass $\mathbf{X}=\ldots \mathrm{m}$
(e) The copper chloride solution used in the investigation contained 300 grams per dm^{3} of solid CuCl_{2} dissolved in $1 \mathrm{dm}^{3}$ of water.

The students used $50 \mathrm{~cm}^{3}$ of copper chloride solution in each experiment.
Calculate the mass of solid copper chloride used in each experiment.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass =

Q13.
This question is about acids, alkalis and bases.
A student reacted zinc oxide powder with hydrochloric acid to produce zinc chloride solution.
(a) Complete the equation for the reaction by writing the state symbols.
(b) Give one way that the student could speed up the reaction between zinc oxide powder and hydrochloric acid.
\qquad
\qquad

Hydrochloric acid was the limiting reactant.
(c) How could the student know when all the hydrochloric acid has reacted?
\qquad
\qquad
(d) How could the student obtain zinc chloride solution from the reaction mixture when all the hydrochloric acid has reacted?
\qquad
\qquad
(e) Describe how zinc chloride crystals are produced from zinc chloride solution.
\qquad
\qquad
\qquad
\qquad

Sulfuric acid and sodium hydroxide react to produce sodium sulfate.
(f) Sulfuric acid is gradually added to sodium hydroxide solution.

The pH of the mixture changes as the sulfuric acid is added until in excess.
Suggest the pH at:

- the start before sulfuric acid is added
- the end when sulfuric acid is in excess.
pH at start = \qquad
pH at end $=$ \qquad
(g) Complete the symbol equation for the preparation of sodium sulfate.

You should balance the equation.
\qquad $+$ \qquad
(h) A solution of hydrochloric acid had a hydrogen ion concentration of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$

Water was added to the hydrochloric acid until the pH increased by 1
What was the hydrogen ion concentration of the hydrochloric acid after water had been added?

Tick (\checkmark) one box.
$100 \mathrm{~mol} / \mathrm{dm}^{3}$

$10 \mathrm{~mol} / \mathrm{dm}^{3}$

$0.10 \mathrm{~mol} / \mathrm{dm}^{3}$

$0.010 \mathrm{~mol} / \mathrm{dm}^{3}$

Q14.

A student investigated the temperature change when magnesium was added to copper sulfate solution.

This is the method used.

1. Pour $30 \mathrm{~cm}^{3}$ of copper sulfate solution into a polystyrene cup.
2. Measure the temperature of copper sulfate solution every minute for 3 minutes.
3. Add magnesium on the fourth minute.
4. Measure the temperature of the mixture at 5 minutes and then every minute up to 14 minutes.
(a) What is the dependent variable in this investigation?
\qquad

The student used the results to plot a graph.
The image below shows the graph.

(b) Suggest why the copper sulfate solution was left for four minutes before adding the magnesium.
\qquad
\qquad
(c) Complete the graph above by:

- drawing a line of best fit through all the points after 7 minutes
- extending the line back to 4 minutes.
(d) The temperature change for the reaction is the temperature difference between the two graph lines at 4 minutes.

Determine the temperature change for the reaction.
Use the graph above.
\qquad
\qquad
Temperature change $=$ \qquad ${ }^{\circ} \mathrm{C}$
(e) Explain why the temperature of the mixture decreases after 7 minutes.
\qquad
\qquad
\qquad
\qquad
(f) The student repeated the experiment with an unknown metal \mathbf{Q} instead of magnesium.

All the other variables were kept the same.
The student recorded a smaller temperature change.
Suggest the identity of metal \mathbf{Q}.
Give one reason for your answer.
Metal Q \qquad
Reason \qquad
\qquad
(g) A copper sulfate solution contained 0.100 moles of copper sulfate dissolved in $0.500 \mathrm{dm}^{3}$ of water.

Calculate the mass of copper sulfate in $30.0 \mathrm{~cm}^{3}$ of this solution.
Relative formula mass $\left(M_{r}\right)$: $\mathrm{CuSO}_{4}=159.5$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = g
(Total 14 marks)

Q15.

This question is about gold and compounds of gold.
(a) In the alpha particle scattering experiment alpha particles are fired at gold foil.

Alpha particles are positively charged.
The diagram below shows the results.

What two conclusions can be made from the results?
Tick ($\sqrt{ }$) two boxes.

Atoms are balls of positive charge with embedded electrons.

Atoms are tiny spheres that cannot be divided.

Atoms have a positively charged nucleus.

Mass is concentrated in the nucleus in the centre of atoms.

Neutrons exist within the nucleus.

(b) The gold foil is:

- 4.00×10^{-7} metres thick
- 2400 atoms thick.

What is the diameter of one gold atom in metres?
Give your answer to 3 significant figures.
\qquad
\qquad
\qquad

Diameter of one gold atom (3 significant figures) $=$ \qquad m
(c) Gold reacts with the elements in Group 7 of the periodic table.
0.175 g of gold reacts with chlorine.

The equation for the reaction is:

$$
2 \mathrm{Au}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AuCl}_{3}
$$

Calculate the mass of chlorine needed to react with 0.175 g of gold.
Give your answer in mg
Relative atomic masses $\left(A_{r}\right): \mathrm{Cl}=35.5 \mathrm{Au}=197$
\qquad
Mass of chlorine $=$ \qquad mg

Q16.
This question is about elements in the periodic table.
(a) What order did scientists use to arrange elements in early periodic tables?
\qquad
\qquad
(b) In the early periodic tables some elements were placed in the wrong groups.

Mendeleev overcame this in his periodic table.
Give one way Mendeleev did this.
\qquad
\qquad

The table shows the boiling points of fluorine, chlorine and bromine.

Element	Boiling point in ${ }^{\circ} \mathbf{C}$
Fluorine	-186
Chlorine	-34
Bromine	+59

(c) Explain why the boiling points in the table are low.
\qquad
\qquad
\qquad
\qquad
(d) Explain the trend in the boiling points in the table above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Explain why neon is unreactive.

Give the electronic structure of neon in your answer.
\qquad
\qquad
\qquad
\qquad
(f) How many atoms are there in 1 g of argon?

The Avogadro constant is 6.02×10^{23} per mole.
Relative atomic mass $\left(A_{r}\right)$: $\mathrm{Ar}=40$
\qquad
\qquad
\qquad
\qquad
Number of atoms in $1 \mathrm{~g}=$ \qquad

Q17.

This question is about oxygen $\left(\mathrm{O}_{2}\right)$ and sulfur dioxide $\left(\mathrm{SO}_{2}\right)$.
(a) Give the test and result for oxygen gas.

Test \qquad
Result \qquad
(b) The reaction between oxygen and sulfur dioxide is at equilibrium.

$$
\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Some of the sulfur trioxide $\left(\mathrm{SO}_{3}\right)$ is removed.
Explain what happens to the position of the equilibrium.
\qquad
\qquad
\qquad
\qquad
(c) Sulfur dioxide is an atmospheric pollutant.

Sulfur dioxide pollution is reduced by reacting calcium oxide with sulfur dioxide to produce calcium sulfite.

$$
\mathrm{CaO}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3}
$$

7.00 g of calcium oxide reacts with an excess of sulfur dioxide.

Relative atomic masses $\left(A_{r}\right): \mathrm{O}=16 \quad \mathrm{~S}=32 \quad \mathrm{Ca}=40$
Calculate the mass of calcium sulfite produced.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of calcium sulfite produced $=$ \qquad

Q18.
Group 2 metal carbonates thermally decompose to produce a metal oxide and a gas.
(a) Give the formula of each product when calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ is heated.
\qquad and \qquad
(b) The relative formula mass (M_{r}) of a Group 2 metal carbonate is 197

Relative atomic masses $\left(A_{r}\right): \quad \mathrm{C}=12 \quad \mathrm{O}=16$
Calculate the relative atomic mass $\left(A_{r}\right)$ of the Group 2 metal in the metal carbonate.
Name the Group 2 metal.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Relative atomic mass $\left(A_{r}\right)=$ \qquad
Metal \qquad

The graph below shows the volume of gas produced when a different Group 2 carbonate, \mathbf{W}, is heated.

(c) Calculate the gradient of the line in the graph above.

Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Gradient \qquad
Unit \qquad
(d) $24 \mathrm{dm}^{3}$ of gas is produced when one mole of a Group 2 carbonate is heated.

Determine the relative formula mass of the Group 2 carbonate \mathbf{W}.
Use the graph above.
\qquad
Relative formula mass $\left(M_{r}\right)=$ \qquad

Q19.
This question is about iron.
Iron reacts with dilute hydrochloric acid to produce iron chloride solution and one other product.
(a) Name the other product.
\qquad
(b) Suggest how any unreacted iron can be separated from the mixture.
\qquad
\qquad

Magnesium reacts with iron chloride solution.

$$
3 \mathrm{Mg}+2 \mathrm{FeCl}_{3} \rightarrow 2 \mathrm{Fe}+3 \mathrm{MgCl}_{2}
$$

(c) 0.120 g of magnesium reacts with excess iron chloride solution.

Relative atomic masses $\left(A_{r}\right): \mathrm{Mg}=24 \quad \mathrm{Fe}=56$
Calculate the mass of iron produced, in mg
\qquad
Mass of iron = \qquad mg
(d) Explain which species is reduced in the reaction between magnesium and iron chloride.

$$
3 \mathrm{Mg}+2 \mathrm{FeCl}_{3} \rightarrow 2 \mathrm{Fe}+3 \mathrm{MgCl}_{2}
$$

Your answer should include the half equation for the reduction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q20.

A student investigated the effect of the size of marble chips on the rate of the reaction between marble chips and hydrochloric acid.

This is the method used.

1. Add 10 g of marble chips into the flask.
2. Add $50 \mathrm{~cm}^{3}$ of hydrochloric acid, connect the gas syringe and start a timer.
3. Record the volume of gas produced every 10 seconds.

Figure 1 shows the apparatus.
Figure 1

(a) Complete the equation for the reaction.
$\mathrm{CaCO}_{3}+$ \qquad $\mathrm{HCl} \longrightarrow$

Figure 2 shows the student's results

(b) Describe the trend shown in Figure 2

Use values in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Describe how you would use Figure 2 to find the rate of the reaction at 15 seconds.

You do not need to do a calculation.
\qquad
\qquad
\qquad
\qquad
(d) Give the units for the rate of this reaction.
\qquad

The table below shows the results of the investigation.

Relative size of marble chips	Volume of gas produced in $\mathbf{c m}^{3}$ after given time in seconds					
	10 s	20 s	30 s	40 s	50 s	60 s
Small	35	53	60	60	60	60
Medium	21	39	51	58	60	60
Large	14	29	39	48	58	60

(e) Give one conclusion about how the size of the marble chips affects the rate of the reaction.
\qquad
\qquad
(f) Suggest why all three sizes of marble chips produce a maximum volume of $60 \mathrm{~cm}^{3}$ of gas.
\qquad
\qquad
(g) Figure 3 shows eight small cubes, each $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$, and one large cube, $2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$

Figure 3

Total volume of small cubes $=8 \mathrm{~cm}^{3}$
Volume of large cube $=8 \mathrm{~cm}^{3}$
Total surface area of small cubes $=48 \mathrm{~cm}^{2}$
Calculate the surface area of the large cube.
\qquad
\qquad
\qquad
\qquad
Surface area of the large cube $=$ \qquad cm^{2}
(h) Explain why the size of the marble chips affects the rate of the reaction.

Give your answer in terms of 'collision theory'.
\qquad
\qquad
\qquad
\qquad
\qquad
(i) The student repeated the investigation with small marble chips using hydrochloric acid with a lower concentration.

Figure 4 shows the volume of gas produced during the first 40 seconds.
Figure 4

Explain why the results for the lower concentration of acid are different from the results for the higher concentration of acid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 17 marks)

Q21.

Fertilisers are formulations.
(a) What is a formulation?
\qquad
\qquad
(b) A bag of fertiliser contains 14.52 kg of ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$.

Relative formula mass (M_{r}): $\mathrm{NH}_{4} \mathrm{NO}_{3}=80$
Calculate the number of moles of ammonium nitrate in the bag of fertiliser.
Give your answer in standard form to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Moles of ammonium nitrate $=$ \qquad mol
(c) The fertiliser also contains potassium chloride.

Explain why potassium chloride has a high melting point.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark schemes

Q1.

(a) $21.1\left({ }^{\circ} \mathrm{C}\right)$
$14.4\left({ }^{\circ} \mathrm{C}\right)$
allow correct use of an incorrect start temperature
(b) any two from:

- surface area of metal
- $25 \mathrm{~cm}^{3}$ / volume of copper sulfate solution
- concentration of copper sulfate solution
- mass $/ 1 \mathrm{~g}$ of metal
ignore amount
ignore temperature
ignore stirring
(c)
$\frac{9.2+9.5+9.2}{3}$ or $\frac{27.9}{3}$
$=9.3\left({ }^{\circ} \mathrm{C}\right)$
if no other mark awarded allow 1 mark for $8.8\left({ }^{\circ} \mathrm{C}\right)$
(d) (metal A/zinc) is less reactive (than magnesium)
or
(metal A/zinc) is lower in reactivity series
or
change in temperature is lower (with metal $\mathbf{A} /$ zinc)
allow converse
(e) stays the same
(f) too dangerous
or
too reactive
allow potassium would react with water
(g)

$$
\begin{aligned}
& \frac{25}{100} \times 1.8 \text { or } \frac{1}{4} \times 1.8 \\
& =0.45(\mathrm{~g})
\end{aligned}
$$

Q2.

(a) positively charged
(b) the atom is mainly empty space.
(c) the mass is concentrated at the centre of the atom.
(d) halogens
(e) fluorine
(f) $\quad 2.13$ (g)
(g) $197+(3 \times 35.5)$
or
$197+106.5$
$=303.5$

Q3.

(a) balance
(b) mass was greater / more than expected
(c) dry the bottom of the evaporating basin
or
use an electric heater
(d) heat until the mass of the evaporating basin and contents is constant.
(e) evaporation
ignore boiling

$$
0
$$

(f) C
(g)

$$
\begin{aligned}
& \frac{0.23+0.23+0.20}{3} \text { or } \frac{0.66}{3} \\
& =0.22(\mathrm{~g})
\end{aligned}
$$

(h) mass of dissolved solids
(i)

$$
\begin{aligned}
& \frac{25}{150} \times 3.6 \text { or } \frac{1}{6} \times 3.6 \\
& =0.6(\mathrm{~g})
\end{aligned}
$$

Q4.

(a) $2 \mathrm{Na}+\mathrm{Cl} 2 \rightarrow 2 \mathrm{NaCl}$
allow multiples
(b) 7.1 (g)
(c)
this order only silver
green
allow yellow
yellow
allow white
white
(d) Na^{+}
Cl^{-}
if no other mark awarded allow 1 mark for +(1) charge for sodium ion and -(1) charge for chloride ion
(e) an electron
(f) potassium (atom) is larger
potassium (atom) has more energy levels (of electrons)
or
potassium (atom) has more shells (of electrons)
do not accept more outer shells

Q5.

(a) 2
allow multiples of whole equation
(b) $50 \mathrm{~cm}^{3}$ measuring cylinder
(c) headings: time and volume (of gas)
allow in either column
units: s and cm^{3}
allow any units of time and volume placed in relevant column
time values correct (and match units)
volume values match time values
ignore incorrect representation of time values
if no other marks awarded allow 1 mark for time with correct units or
volume with correct units
(d) any one from:

- concentration of the acid was lower (than expected)
- some (gas) escaped
- impure magnesium
- temperature lower (than expected)
answers must relate to the diagram
ignore answers relating to amount or surface area or time
(e) any two from:
- length of magnesium
- or
- surface area of magnesium
allow mass of magnesium
allow same form of magnesium
allow same size of magnesium
- volume of acid
ignore concentration of hydrochloric acid
- temperature (of acid)
ignore room temperature
(f) increased
allow went up
allow got bigger
particles
allow ions or molecules
ignore concentration
frequently
allow often

Q6.

(a) B
(b) calcium oxide or CaO
carbon dioxide or CO_{2}
either order
(c) decomposition
(d) endothermic
(e) $\quad 32(\mathrm{~g})$
allow 31-33 (g)
(f) $\frac{32}{5.2} \times 24$

148 (g) allow a range 143-153 (g)
or
uses graph e.g. $12 \mathrm{dm}^{3}$ gives 74 (g) (1)
(then factors up so that $24 \mathrm{dm}^{3}$ gives) 148 (g) (1)
allow a range 143-153 (g)
an answer of 148 (g) scores 2 marks
allow ecf from part (e)
(g) (mistakes)
increase in mass $=3$ (not 4)
allow mistakes in either order
inserted numbers inversely into formula allow numbers wrong way round
(calculation)
an answer of 250 scores the $\mathbf{2}$ calculation marks
gradient $=\frac{750}{3}$

$$
\text { allow } \frac{1000}{4}
$$

250 (cm^{3} per g)
if no calculation marks awarded
allow $\frac{750}{4}$ or 187.5 or $\frac{3}{750}$
or 0.004 for 1 mark
(h) 3×16 or 48
$(48)+12$ or 60
allow their mass of oxygen +12

84 - (60) or 24
allow 84 - their mass of carbonate
magnesium or Mg
magnesium or Mg without working scores this mark
an answer of 24 scores the $\mathbf{3}$ calculation marks

Q7.

(a) lines from:

- independent to size of marble chips
- control to volume of acid
ignore arrowheads
do not accept if more than one line from one box
(b) calcium chloride
carbon dioxide
do not accept carbon oxide
water
do not accept hydrogen oxide
all three needed for 2 marks
allow 1 mark if two correct
(c) stops loss of acid
allow stops loss of water / liquid allow to ensure that only the gas escapes
do not accept stops acid evaporating
do not accept stops gas / CO_{2} / water vapour escaping
(d) 0.053
allow 0.05
allow 0.053333...
do not accept 0.052
ignore units
(f) all points correctly plotted
allow 1 mark for 5 points correctly plotted allow $\pm 1 / 2$ a small square
line of best fit
should be a curve nearer to $(10,0.8)$ than the anomaly $(20,0.6)$ and through all other points
if plotting incorrect allow 1 mark for appropriate line of best fit through student's points
(g) the eight small marble chips have a larger surface area, so more frequent collisions

Q8.

Level 3: The method would lead to the production of a valid outcome. The key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome.
Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content:

- weigh test tube
- add metal carbonate
- weigh test tube and metal carbonate
- heat
- allow to cool
- weigh test tube and metal oxide
- repeat (heat, cool and weigh) until no change in mass
- determine mass of metal carbonate used
- determine mass of carbon dioxide produced
- repeat with different metal carbonate(s)
an alternative method can be based on any mass of metal carbonates and at end divide by this mass to find mass carbon dioxide per gram metal carbonate
level 3 change in mass is determined for at least one other carbonate

Q9.

(a) Ca Mg Zn Cu
(b) any two from:

- mass (of metal / element) allow weight
- surface area (of metal / element) ignore size ignore length
- concentration (of acid)
ignore pH
ignore strength
- volume (of acid)
- temperature (of acid)
ignore room temperature
(c) (type of) metal / element
(d) (beryllium is) less reactive
any one from:
- greater attraction between nucleus and outer electrons
- more energy is needed to remove electrons
- loss of electrons is more difficult
- outer electrons closer to nucleus
- less shielding
allow converse answers for magnesium
MP2 only if MP1 is correct
allow higher in group
allow reactivity increases down the group
ignore reactivity series
(e) $\frac{50}{1000}\left(\mathrm{dm}^{3}\right)$
$=0.05\left(\mathrm{dm}^{3}\right)$
$\left(\frac{3.2}{0.05}\right) 64\left(\mathrm{~g} \mathrm{per} \mathrm{dm}^{3}\right)$
alternative approach:
$\frac{3.2}{50}(1)$
$=0.064(1)$
$(\times 1000)=64(\mathrm{~g} \mathrm{per} \mathrm{dm} 3$ 3 $)(1)$
alternative approach:
$\frac{1000}{50}$
$=20(1)$
$(\times 3.2)=64\left(\mathrm{~g}\right.$ per dm$\left.{ }^{3}\right)(1)$
an answer of 64 (g per dm^{3}) scores 3 marks an incorrect answer for one step does not prevent allocation of marks for subsequent steps
an answer of $0.16 / 0.064 / 0.64 / 6.4 / 6.4 \times 10^{-5}(g$ per dm3) gains 2 marks

Q10.
(a) (aq)

> allow aq ignore aqueous ignore formulae
(b) HNO_{3}
(c) red
allow orange or yellow do not accept green
purple
or blue
allow shades of purple e.g. violet
(d) D
(e) 3×16 or 48
$\frac{48}{80}(\times 100)$

60 (\%)
an answer of 60 (\%) scores 3 marks
an answer of 20 (\%) scores 2 marks for:
$\frac{16}{80}(\times 100)$
= 20 (\%) (1)
(f) Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.

Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

Steps

- use a suitable container e.g. test tube
- use insulation
- add water
- measure the initial water temperature (with a thermometer)
- add stated mass e.g. 1 g or 1 spatula
- \quad stir (to dissolve the solid)
- measure the final (allow lowest or highest) temperature of the solution
- calculate the temperature difference or determine graphically
- repeat with different masses
- repeat with the same volume of water
to access level 3 there must be an indication of how the temperature change is determined using different masses dissolved in the same quantity of water

Q11.

(a) potable
(b) boil (water)
ignore heat
do not accept filter
do not accept incorrect test
(boils) at $100^{\circ} \mathrm{C}$
alternative approach freeze (water) (1)
(freezes) at $0^{\circ} \mathrm{C}$ (1)
if no other mark awarded, allow 1 mark for evaporate or distil water and no solid left
allow boils at $100^{\circ} \mathrm{C}$ for 2 marks
(c) Level 2: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 1: The design/plan would not necessarily lead to a valid outcome. Some steps are identified, but the plan may not be logically sequenced.

No relevant content

Indicative content

- weigh container.
- measure volume ($100 \mathrm{~cm}^{3}$) of water into container.
- evaporate / heat until dry.
- weigh container and remaining solids.
- determine mass of dissolved solids
to access Level 2 there should be an indication of using a known volume of water, heating until dry and determining the mass of solid.
(d)
\quad an answer of $0.031(\mathrm{~g})$ scores 4 marks
$\left(\right.$ conversion of cm^{3} to $\left.\mathrm{dm}^{3}\right)$
$\left(250 \mathrm{~cm}^{3}=\frac{250}{1000}\right.$ or $0.25\left(\mathrm{dm}^{3}\right)$
$($ conversion of mg to g$)$
$(125 \mathrm{mg}=) \frac{125}{1000}$ or $0.125(\mathrm{~g})$
$(0.25 \times 0.125)=0.03125$
\quad allow correct calculation from incorrect attempt(s) at conversion
allow an answer correctly rounded to 2 significant figures from an incorrect calculation that uses the values in the question
(e) $\frac{44}{500} \times 100$
an answer of 8.8 (\%) or 9 (\%) scores 2 marks

Q12.
(a) chlorine
(b) copper is less reactive than hydrogen
(c) $\quad 1.8(\mathrm{mg})$
allow an answer in range 1.7-1.9
(d) $\frac{3.02+3.01+x}{3}=3.06$
allow any other suitable method
3.15 (mg)
if no other mark awarded allow 9.18 for 1 mark
an answer of $3.15(\mathrm{mg})$ scores 2 marks
(e) $\frac{50}{1000}$ or $\frac{1}{20}$ or 0.05
$(0.05) \times 300$
the second mark is dependent on the first mark being scored

15 (g)
or
$\frac{300}{1000}$ or $\frac{3}{10}$ or $0.03(1)$
(0.3) $\times 50$ (1)
the second mark is dependent on the first mark being scored
$15(\mathrm{~g})(1)$
if no other mark awarded allow 150 or 15000 for 1 mark

Q13.
(a) $\mathrm{ZnO}(\mathbf{s})+\mathrm{HCl}(\mathbf{a q}) \rightarrow \mathrm{ZnCl}_{2}(\mathbf{a q})+\mathrm{H}_{2} \mathrm{O}$ (I)
allow 1 mark for $2 / 3$ correct state symbols
(b) any one from:

- warm / heat the mixture
- increase the concentration of the (hydrochloric) acid
ignore add a catalyst
ignore stir
ignore powder
ignore add more zinc oxide
do not accept volume / amount of (hydrochloric) acid do not accept increase the surface area
(c) zinc oxide remains
or
solid remains
ignore colour allow zinc oxide is added until in excess
(d) filtration / filter
(e) heat
do not accept heat to dryness
do not accept heat to dryness
leave to crystallise / cool
allow leave to evaporate some water

Q14.
(a) temperature (change)
(b) to reach a constant temperature allow to reach room temperature
(c) line of best fit after 7 minutes
extends line back to 4 minutes
ignore extension of line beyond 4 minutes
the diagram below scores 2 marks

(d) (maximum and minimum values at 4 minutes)
$26.3\left({ }^{\circ} \mathrm{C}\right)$ and $17.5\left({ }^{\circ} \mathrm{C}\right)$
allow ecf from (c)
(temperature change at 4 minutes)
$=8.8\left({ }^{\circ} \mathrm{C}\right)$
(e) the reaction finished / stopped
(so) energy is lost to surroundings / atmosphere
or
(so the) solution cools (back to room temperature)
allow heat for energy
(f) aluminium / zinc / iron / beryllium
allow Al/ Zn / Fe / Be
do not accept copper, silver
MP2 dependent on a correct answer to MP1
metal \mathbf{Q} is less reactive (than magnesium)
or
metal \mathbf{Q} is lower in reactivity series
allow converse
(g) (unit conversion)
$30.0 \mathrm{~cm}^{3}=0.030 \mathrm{dm}^{3}$
or
$0.500 \mathrm{dm}^{3}=500 \mathrm{~cm}^{3}$
$\begin{aligned} \text { (moles }= & \left.\begin{array}{l}\frac{30}{500}\end{array} 0.1=\right) 0.006 \\ & \text { allow correct use of incorrect / no unit conversion }\end{aligned}$
or
$\left(\right.$ moles $\left.=\frac{0.030}{0.50} \times 0.1=\right) 0.006$
mass $=0.006 \times 159.5$
allow correct use of incorrect value for number of moles
$=0.957(\mathrm{~g})$
allow 0.96 (g)

Q15.

(a) atoms have a positively charged nucleus.
mass is concentrated in the nucleus in the centre of atoms.
(b)
$\frac{4 \times 10^{-7}}{2400}$
$=1.66666 \times 10^{-10}$
$=1.67 \times 10^{-10}(\mathrm{~m})$
allow 0.000000000167 (m)
allow an answer correctly rounded to 3 significant figures from an incorrect calculation which uses the values in the question
(c) (moles $\left.\mathrm{Au}=^{\frac{0.175}{197}}=\right) 0.000888$
(moles $\mathrm{Cl}_{2}=0.000888 \times{ }^{\frac{3}{2}}=$) 0.00133
allow a correct calculation using an incorrectly calculated value of moles of gold
$\left(\right.$ mass $\left.\mathrm{Cl}_{2}=\right) 0.00133 \times 71$
allow a correct calculation using an incorrectly calculated value of moles of chlorine
$=0.0946(\mathrm{~g})$
$=94.6(\mathrm{mg})$
allow a correct conversion using an incorrectly calculated mass of chlorine

alternative approach:

(from equation 2 moles of Au reacts with 3 moles of Cl_{2})
(so) 394 g Au reacts with $213 \mathrm{~g} \mathrm{Cl}_{2}$ (1)
1 g Au reacts with ($\frac{213}{394}=$)
$0.54 \mathrm{~g} \mathrm{Cl}_{2}$ (1)
allow a correct calculation using an incorrectly calculated value of mass of gold and / or chlorine
0.175 g Au reacts with
$0.54 \times 0.175 \mathrm{~g} \mathrm{Cl}_{2}(1)$
allow a correct calculation using an incorrectly
calculated value of mass of gold and / or chlorine
$=0.0946(\mathrm{~g})(1)$
$=94.6(\mathrm{mg})(1)$
allow a correct conversion using an incorrectly calculated mass of chlorine

Q16.

(a) atomic weight
do not accept atomic mass or A_{r}
(b) left gaps / spaces
or
changed the order based on atomic weights
allow placed them in correct groups according to properties
do not accept reference to atomic number
(c) weak forces between the molecules
or
weak intermolecular forces
allow weak intermolecular bonds
do not accept incorrect references to covalent bonds
(so) little energy required to overcome / break the forces between molecules or
(so) little energy required to overcome / break the intermolecular forces
allow (so) little energy required to separate the molecules allow (so) little energy required to overcome / break the intermolecular bonds
ignore less energy
(d)
allow converse explanation in terms of boiling point
(the) molecules get larger going down the group
(so the) forces between the molecules increase
or
(so the) intermolecular forces increase
(so the) boiling points increase going down the group
or
(so the) boiling points increase with increasing relative atomic mass
allow (so) more energy is needed to separate the molecules
(e) 2,8
allow diagram or description
(so) stable arrangement of electrons
or
(so) full outer shell
(f)

$$
\text { an answer of } 1.51 \times 10^{22} \text { scores } 2 \text { marks }
$$

$\frac{1}{40} \times 6.02 \times 10^{23}$
or
$0.025 \times 6.02 \times 10^{23}$
1.51×10^{22}
allow 1.505×10^{22}

Q17.

(a) glowing splint
relights
(b) equilibrium shifts to right-hand side
allow towards the products
allow in favour of the forward reaction
(because) concentration of SO_{3} decreases
this marking point is dependent on first marking point being awarded
allow pressure decreases
allow to increase the concentration of SO_{3} allow to re-establish equilibrium
(c) $\quad\left(\mathrm{M}_{\mathrm{r}} \mathrm{CaO}=\right) 56$
$\left(\mathrm{Mr} \mathrm{CaSO}_{3}=\right) 120$
$\frac{7}{56} \times 120$
$=15(.0 \mathrm{~g})$
an answer of $15(.0 \mathrm{~g})$ scores 4 marks
in all approaches allow a correct calculation using an incorrectly calculated M_{r}

alternative approach A

($\mathrm{M}_{r} \mathrm{CaO}=$) 56
$\frac{7}{56}=0.125$ (moles)
(mass $\mathrm{CaSO}_{3}=$) 0.125×120
(1)
$=15(.0 \mathrm{~g})$

alternative approach B

$\left.M_{r} \mathrm{CaO}=\right) 56$
56
$\overline{7}=8$ (factor)
$\mathrm{Mr}_{\mathrm{r}} \mathrm{CaSO}_{3}=120$
$\frac{120}{8}=15(.0 \mathrm{~g})$

alternative approach C

$\mathrm{M}_{\mathrm{r}} \mathrm{CaO}=56$

$$
\begin{align*}
& \left.M_{r} \mathrm{CaSO}_{3}=\right) 120 \\
& \frac{120}{56}=2.14235714 \text { (factor) } \\
& 2.14235714 \times 7=15(.0 \mathrm{~g}) \tag{1}
\end{align*}
$$

Q18.
(a) CaO
CO_{2}
1
either order ignore names
(b) $[12+(3 \times 16)]$
or 60
$(197-60=) 137$
barium or Ba
barium or Ba without working scores this mark an answer of 137 scores the 2 calculation marks
(c) (working) Y increase and X increase measured from graph and substitution into $\frac{\Delta Y}{\Delta X}$

y-axis	$80-85$	$162-170$	$248-252$	$330-335$
x-axis	0.5	1.0	1.5	2.0
$=$	$160-170$	$162-170$	$165-168$	$165-168$

(answer) 167
allow answer in range 160-174
(units) $\mathrm{cm}^{3} / \mathrm{g}$
allow $\mathrm{cm}^{3} \mathrm{~g}^{-1}$
if no other mark awarded allow 1 mark for the inverse (
$\frac{\Delta Y}{\Delta X}$,
or 0.006
an answer of 160-174 scores the $\mathbf{2}$ calculation marks
(d) (from graph)
volume to $240 \mathrm{~cm}^{3}$ mass
$=1.45 \mathrm{~g}$
allow answer based on any reading from the graph (e.g. $250 \mathrm{~cm}^{3}=1.5 \mathrm{~g}$)
ratio is $\frac{1}{100}$ (ie $\frac{24000}{240}$)
allow ratio from their volume
100×1.45
$\left(\frac{24000}{250}\right) \times 1.5$

145
allow range 140-150
or
allow method using answer from part (c)
$x=\frac{y}{m}(1)$
(rearrangement of $y=m x$ where $m=$ answer from part (c))
$24\left(\mathrm{dm}^{3}\right)$ to $24000\left(\mathrm{~cm}^{3}\right)(1)$
$\frac{24000}{\text { answer from part (c) }}$ (1)
144 (1) allow range 140-150

Q19.
(a) hydrogen or H_{2}
allow hydrogen gas ignore H without the 2 subscript
(b) filtration / filter
allow magnet or decant ignore heating
(c) $(\mathrm{Mg}) \frac{0.12}{24}$ or 0.005 (moles)
mark is for \div by 24
(Fe) $\frac{2}{3} \times 0.005=0.00333 \times 56$

$$
\text { mark is for } \times \frac{2}{3}
$$

$($ mass Fe $)=0.00333 \times 56$
mark is for $\times 56$
$=0.1866(\mathrm{~g})$
$=187(\mathrm{mg})$
an answer of $280(\mathrm{mg})$ scores 4 marks an answer of 0.280 scores 3 marks (no ratio from equation)
184 scores $0[=(3 \times 24)+(2 \times 56)]$

OR

$(\mathrm{Mg})=\frac{0.12}{(3 \times 24=) 72}(1)$
$=0.00166$ or $\frac{1}{600}$ (moles) (1)
$($ mass of Fe$)=0.00166$
or $\frac{1}{600} \times 112(2 \times 56)(1)$
$=0.1866(\mathrm{~g})(1)$
187 (mg) (1)
OR
$72 \mathrm{~g} \mathrm{Mg} \rightarrow 112 \mathrm{~g} \mathrm{Fe}(1)$
$1 \mathrm{~g} \mathrm{Mg} \rightarrow \frac{112}{72}$ or 1.56 g Fe (1)
$0.12 \mathrm{~g} \mathrm{Mg} \rightarrow \frac{112}{72} \times 0.12$ (1)
$=0.1866(\mathrm{~g})(1)$
$=187(\mathrm{mg})(1)$
an answer of 185-190 (mg) scores 5 marks an answer of $0.185-0.19$ scores 4 marks
(d) Fe^{3+}
(because) reduction is gain of electrons
allow change in oxidation state / (+)3 to 0
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{(-)} \rightarrow \mathrm{Fe}$

Q20.
(a) $\mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
products in any order
balancing: 2 (HCl)
dependent on correct formulae for products
(b) value from graph used to show volume increase
must include a time or volume value
values from graph used to show the volume increases less rapidly must include time interval or volume increment
volume or time stated when graph line levels off
allow levels off at $60\left(\mathrm{~cm}^{3}\right)$ or 28 to 30 s
allow descriptions in terms of rate of reaction
values must be approximately correct
(c) draw tangent at 15 s
allow draw a straight line on the curve at 15 s
calculate gradient
allow correct description of gradient calculation ignore calculations if given
(d) centimetres cubed per second
allow $\mathrm{cm}^{3} / \mathrm{s}$ or $\mathrm{cm}^{3} \mathrm{~s}^{-1}$ (all lower case)
allow mixture of abbreviations and words, e.g.
centimetres cubed/s
do not accept non-SI abbreviations (e.g. sec for s)
(e) (rate) increases as chips get smaller
allow converse
(f) same amount of acid
or
same number of moles of acid
allow same volume of acid
allow same concentration of acid
allow same mass of CaCO_{3} / marble chips
allow one reactant is the limiting factor
(g) (surface area of each face $=2 \times 2 \Rightarrow 4$
$(6 \times 4=) 24\left(\mathrm{~cm}^{2}\right)$
allow $6 \times$ student's value from step 1
an answer of $24\left(\mathrm{~cm}^{2}\right)$ scores 2 marks
(h) small(er) chips have large(r) surface area (for the same volume)

> allow converse
so more frequent collisions
allow more chance of collisions allow more likely to collide do not accept reference to speed of particles or energy of collisions ignore more collisions ignore more successful collisions
(i) (sloping part is less steep because) reaction is slower
due to less frequent collisions
do not accept reference to speed of particles or energy of collisions ignore fewer collisions
fewer acid particles (in same volume)
ignore weaker acid

or

(sloping part is less steep because) reaction is slower (1)
there are fewer acid particles (in same volume) (1)
(graph levels off lower) so less gas is produced (1)
allow converse for more concentrated acid

Q21.

(a) a mixture designed as a useful product
(b) \quad mass $=14520 \mathrm{~g}$
$\Leftrightarrow=\frac{14520}{80(\mathrm{~mol})}$
allow correct substitution of incorrectly converted mass must use M_{r} given (80) to gain marks in steps 2 and 3
(=) 181.5 (mol)
(=) $1.8 \times 10^{2}(\mathrm{~mol})$
allow answer correctly given in standard form to correct sig figs from an incorrect calculation
an answer of $1.8 \times 10^{2}(\mathrm{~mol})$ gains 4 marks
(c) (giant) lattice
allow giant structure
ionic
strong bonds or strong electrostatic forces do not accept strong intermolecular forces / bonds
large amounts of energy needed to overcome ignore heat
max 2 marks for incorrect reference to bonding or structure or particles

